Matematika :

Oct 24, 2011

Soal Matematika : Problem Corner - Mathematical Excalibur

Problem 336. Tentukan semua pasangan bilangan bulat (x,y) yang berbeda yang memenuhi persamaan
x3 + 2009y = y3 + 2009x.

Problem 337. Pada segitiga ABC,ABC =ACB =40°. P dan Q adalah dua titik di dalam segitiga sehingga PAB =QAC =20° dan  PCB =QCA =10°. Tentukan apakah B, P, Q adalah collinear atau tidak.

Problem 338. barisan {an} dan {bn} memenuhi a0=1, b0=0 dan untuk  n = 0,1,2,…,
ban+1 = 7an + 6bn – 3
bn+1 = 8an + 7bn - 4
Tunjukan bahwa an adalah bilangan kuadrat untuk semua n = 0,1,2,…

Problem 339. In triangle ABC,ACB =90°. For every n points inside the triangle, prove that there exists a labeling of these points as P1, P2, …, Pn such that

Problem 340. Let k be a given positive integer. Find the least positive integer N such that there exists a set of 2k+1 distinct positive integers, the sum of all its elements is greater than N and the sum of any k elements is at most N/2.
Diambil dari Mathematical Exalibur Vol.14 No.4

No comments:

Post a Comment

Jika ada yang ingin disampaikan tentang isi blog ini, mohon kiranya berkenan untuk memberikan komentar di sini

 

© Copyright yusuf blog 2010 -2011 | Design by Yusuf Blog | Published by Borneo Templates | Powered by Blogger.com.
Related Posts Plugin for WordPress, Blogger...